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We have developed equations that permit the determination of individual compressive 
and tensile creep rates from four-point bend test measurements made on trapezoidal bars. 
The equations developed are for the general stress dependence case. Finnie first proposed 
this type of analysis and solved the equations for the case of linear stress dependence. We 
present graphs that show solutions to the equations for the stress squared case. Creep 
measurements were performed on trapezoidal HS-130 Si3 N4 bars to determine the ratio 
of compressive to tensile creep (/~). The values determined on four separate tests using 
two different temperatures and beam dimension ratios b2/bl gave fairly consistent 
results. The ~'s for previously unstrained material are: 0.24, 0.14, 0.17, and 0.17 with the 
average value of/3 = 0.18. For the case of prestrained Si3 N4,/3 is 0.48. To further test the 
usefulness of this analysis, data from a conventional (rectangular bars) four-point bend 
test were taken from the literature and analysed using the equations developed in this 
paper and the average determined value of/3. The individual tensile and compressive creep 
rates determined in this manner were found to agree very closely with other literature 
data measured in direct tension and compression tests. 

1. Introduct ion 
The four-point bend test is often used to obtain in- 
formation about the high-temperature tensile creep 
behaviour of ceramic materials. This test is easy to 
perform and avoids the problems of alignment and 
fixturing commonly associated with uniaxial tensile 
testing of brittle materials [1 ,2] .  In analysing bend 
test data it is usually assumed that the neutral axis 
passes through the centroid o f  cross-sectional area 
of the test piece [2, 3]. For this assumption to be 
valid, the creep behaviour of the material must be 
the same in both tension and compression. How- 
ever, recent work [4-6]  on hot-pressed silicon 
nitride (Si3N4), a candidate material for high per- 

*The experimental work was performed at the Metallurgy 
(AFSC), Wright-Patterson AFB, Ohio, USA. 
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formance turbine applications, has shown that 
there is a large difference between the tensile and 
compressive creep behaviour of this material. 
Using an idealized model, Lange [7] showed that, 
in general, polycrystalline materials with a viscous 
boundary phase (such as hot-pressed Si3N4) will 
exhibit a much greater rate of deformation in ten- 
sion than in compression. 

The purpose of this paper is to present an 
experimental technique for using four-point bend 
tests on trapezoidal beams to determine the individ- 
ual tensile and compressive creep rates of a ma- 
terial. 
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Finnie [8] originally proposed the technique 
and solved the governing equations for the case of 
a linear dependence of creep rate on stress. This 
paper extends the analysis to an arbitrary stress 
dependence, and then presents solutions for the 
specific case where the creep rate depends on the 
square of the stress. The technique was used to 
analyse four-point bending tests on HS-130 hot- 
pressed SJ3N4 from Norton Co.* in order to deter- 
mine its tensile and compressive creep behaviour. 
These results are compared with data available in 
the literature. 

2. Analysis and development of equations 
In this section, we develop the equations that relate 
material response and specimen geometry to ex- 
perimental data. Parameters of interest are: 
/3, the ratio of compressive to tensile creep strain. 
n, the stress exponent in the general creep law. 
b l and bz, known specimen dimensions. 
3 and 3', measured four-point bending centre- 
point deflections obtained under identical con- 
ditions of bending moment, M, and temperature 
for geometries of  Figs. la and b, respectively. Our 
analysis characterizes the specimen width, b, and 
stress, a, as functions of distance, y,  from the (as 
yet undetermined) neutral axis location. In general, 
both n and/~ may be unknown. One approach is to 
assume a value for n and proceed as detailed in 
Section 4. A second approach is to use the equations 
of force and moment equilibrium to form a set of 
nonlinear equations and seek solutions numerically. 

1- b 2 1 ~I Compressi o-~n bl 

bl Tension ~__~b 2__~ 
(a) (b) 

Figure 1 Nomenclature and orientation of trapezoidal 
cross-section beams. H e is the distance from the neutral 
axis of the beam to the outer compressive fibre and H t is 
the distance to the outer tensile fibre. 

The first approach is used in this paper. 
The material is assumed to respond according 

to a creep law of the form 

e = AonF(t) ,  (1) 

where F(t)  is an arbitrary function of time common 
to both tensile and compressive creep, and A is a 
constant, which may vary between tensile and 
compressive creep, but is constant with respect to 
time. The constitutive law of creep compliance for 
a material is usually assumed [2] to be of this 
form. The creep rate is then given by the time 
derivative of Equation 1, 

e = AanF'( t ) .  (1A) 

The strain time response of most materials under 
creep conditions shows a constant or steady-state 
creep rate over most of their total strain compliance 
[9], where F ' ( t ) =  K (constant). The ratio of A 
(compressive creep) to A'  (tensile creep) at a given 
stress is defined as/3. The assumption that the ten- 
sile and compressive creep strain show the same 
time dependence, i.e. K(eompmssive)=Kttens~), 
appears reasonable, but in any case this analysis 
allows this assumption to be verified. 

Plane sections through a beam are assumed to 
remain plane, so that; 

e(y)  = 6max[  Y ' - -~ t ,  (2) 
Vr" / 

where y is the distance from the neutral axis. The 
slope of the beam will be assumed to be sufficiently 
small so that the approximationt 

1 d 2 Y [  (dYt2]3n d2Y 

d 2 Y ~ 86 

~--2- eenlre point 12 

(3) 

may be made, where R is the radius of curvature, x 
is the distance along the length of the beam be- 
tween the inner load points, I is the distance be- 
tween the inner load points, and Y and 6 are verti- 
cal deflections; Y is a function of position along 
the beam, and y is the deflection at the centre of 
the beam. 

*Reference to a company or product name does not imply approval or recommendation of the product by the Univer- 
sity of California or the US Energy Research and Development Administration to the exclusion of others that may be 
suitable. 

~This assumption introduces less than 0.2% error in the analysis of the creep data in this paper. 
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Care must be exercised to avoid complex num- 
bers in the development of the following equations. 
This difficulty is accomplished by evaluating the 
integrals piecewise, over positive domains of y. 
Accordingly, the following two equations describe 
the specimen width, b, as functions of distance 
from the neutral axis (Fig. 1); 

be(Y) = b2 - -  ( ~ A )  (He --Y), 0 ~<y <~Hc 
k / 

(4) 

In a manner directly analogous to that detailed 
by Finnie [8], stresses for the general case are 
given by; [ Y ,l/n 

\ - /  

/ yi l'~ 
o # )  = o . o , = ,  , o <-y <M,,  \.r 

(5) 
and the force equilibrium equation for bending, 
expressed piecewise, becomes 

_~:t  ot(Y)bt(Y)dy = O, 

which after normalizing with respect to beam 
height (he = HjH, h t = HJH) and collecting 
terms becomes, for the geometry of Fig. la, 

~2n+ 1]~bl 

--hle+wn[~--( n~l[b-2--l)he]= 0 
\ 2 .  + 

(7) 

Due to symmetry, the equation for the complemen- 
tary geometry of Fig. lb may be obtained by sub- 

1 
stituting ~ and ht for/3 and he, respectively. Sol- 

utions of Equation 7 for the case of n = 2 are pre- 

b~ and sented graphically for a range o f - -  - /3 in Fig. 2. 
bl 

Taking 

C - (2n + 1)M 
nblH 2 ' 
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Figure 2 Graphical solutions of Equation 7 for n = 2. This 
graph is used to locate the depth of the neutral axis h e 
versus b~/b 1 for a series of/3's. 

the equation of moment equilibrium 

fHHto(y)ydA ~--- He So ~ 

iff t o,(y)bt(y)ydy M 

(8) 

becomes, for the geometry of Fig. la, 

+ fiwn(1--he)2+ l/n[l + (3n@l) ( ~  -- l)(1--he!l 

(9) 
For the geometry of Fig. lb, 

Ch 'el/n = [j l/n h ? + tm ,e - -  ( n ) (b-~l --1 h i] 

(10) 

These equations can be used to calculate the outer 
fibre stress for a given cross-section and moment, 
provided /3 is known. Rearrangement of these 
equations allows/3 to be determined. 

The outer fibre surface strain is related to the 
radius of curvature bY ehe = --HEIR. By rearranging 
and using Equation 1 the radius of curvature for 
geometry (a) is given by; 

IlR = 13o~ F(t)lHc, (11) 



r ~ , , I ' ' ' '3 r ' ' ' ' [ ' i r |  

6 ~ - ~  ~ 

~ ' / / ~ ' ~ ' ~ ' c ~ ' ~ "  ~' ~ "  o" ~" ~" ~" 

5 

1.0 1.1 1.2 1.3 

Figure 3 Graph ica l  so lu t i ons  o f  E q u a t i o n  13 for  n = 2. 

This  g raph  is u sed  to  d e t e r m i n e  t~ f r o m  m e a s u r e d  values  of  
n 6 x / ~  and  b 2 /b 1 . 

and similarly for geometry (b); 

1/R' = ,n , ~o~ ~(t)/Hc. (12) 

Equation 3 is used to relate beam deflection to the 
radius of curvature; thus 

n,~_ = n / /T~ = Right hand side Equation 10 

46 '  ~/ 1/R' Right hand side Equation 9 

(13) 

Fig. 3 is a graph of the relationship between 
and b2/bl for several values of/3 and n = 2. 

Observation of d and 6' at several times, for which 
creep strains are large compared to the initial elastic 
strains at constant moment allows us to determine 
the ratio of compressive creep to tensile creep (see 
Fig. 3). Once /3 is known the distance from the 
neutral axis (he) can be determined from Fig. 2. If  
the stress exponent, n, is unknown one can deter- 
mine it by the usual graphical method as illustrated 
in Section 4.3 of this paper, or Equations 7, 9 and 
10 can be programmed in a computer and the 
values of  he,/3, and n determined numerically from 
measurements of 6/6'. 

If  6/6' varies greatly with time this analysis is 
not applicable. If/3 = 1, tension and compressive 
creep are the same and the usual bend equations 
are valid. If/3 r 1, then the individual creep rates 
for tensile and compressive creep can be deter- 
mined. Once /3 and h e are known, Equation 9 is 
used to calculate a~c. For this purpose, Fig. 4, a 
graph of l/n Ch e /axe for various bz /b l  ratios and 
~'s, is provided. Measurement of curvature as a 
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Figure 4 Graph  o f  q u a n t i t y  used  to  o b t a i n  aHe (ou te r  
f ibre  compress ive  stress)  as a f u n c t i o n  o f  b 2/b~ for  several  

values  of/3. See E q u a t i o n  9 in  t ex t .  

function of time allows determination of F(t) 
from Equation 11. Equation 1A can then be used 
to determine the individual compressive and ten- 
sion creep rates. The following section illustrates 
how these relationships are used to determine the 
compressive and tensile creep behaviour of HS-130 
Si3 N4. 

3. Experimental 
Four-point bending tests were conducted on 
Si3N4 beams in a tubular furnace open to the 
atmosphere. Deflection of the beam between the 
inner load points was measured directly using a 
differential probe technique. The deflection probe 
rods were capped with Si3N4 to prevent reactions 
on the surface of the test bar. The deflection was 
recorded continuously with a displacement trans- 
ducer and a strip chart recorder. 

Deflection rates as low as 1.2x 10-dmh -1 
could be measured. The load was applied by hang- 
ing weights from the top fixture of the load train. 
The temperature was controlled to within -+2~ 
during each test. 

All the test bars were machined from the same 
HS-130 Si3N4 billet. Beam geometries with b2/bl 
ratios of 3.24 and 2.40 were used in the tests. The 
b 1 dimension was 0.72 cm and the height, H, was 
0.318 cm in both cases. The inner span of the test 
fixture was 1.91 cm long. 
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TABLE I Test conditions for tests of HS-130 Si3 N4. 

Test No. Temperature Moment ~ ,q /~7  # he ~ 
(~ b~/b~ ( N m )  (10-6mh - ' )  MNm -2 

1 1300 3.24 0.752 4.242 1,10 0.24 0.29 85.6 
2 1293 3.24 1.947 22.098 1,14 0.14 0.26 247.2 
3* 1298 3.24 1.344 9.652 1.05 0.48 0.34 130.7 
4 1260 2.40 1.105 3.253 1.10 0.17 0.28 163.5 
5 1253 2.40 1.482 5.105 1.10 0.17 0.28 219.3 

G/-/t d H c  4 1 ~ - 4  h -  l ) 
(MNm -2) (10- h- ) 

65.6 0.86 2.10 
156.04 4.01 11.40 
126.16 2.29 4.44 
108.10 0.64 1.63 
145.0 1.00 2.56 

*Presented (retest of bars from test No. 1). 

4. Results and discussion 
4.1. Determination of/3 and h c 
The determination of/3 and he requires that identi- 
cal bend bars be tested under the same moment 
and temperature conditions in the orientations 
shown in Fig. 1. The following procedure is based 
upon knowledge that the stress exponent, n, for 
Si3 N4 is approximately 2. This value can also be 
determined directly from the data using the usual 
technique of plotting log creep rate versus log 
stress (see Section 4.3). The centre point deflec- 
tions 8 and 6' are then recorded as functions of 
time. Fig. 5 shows deflection curves for two Si3N4 
bars tested at 1300~ and 0 .745Nm bending 
moment, along with the ratio 6/6' at several times. 
The ratio of compressive to tensile creep strain,/3, 
is then determined from Fig. 3 for the b2/bl 
geometry used and for the experimentally deter- 
mined ~ / ~ :  Fig. 2 is then used to determine h e 
and hi using/3 and/3-1 respectively. Table I sum- 
marizes test conditions and results for five sets of 
tests conducted on HS-130 Si3N4. Tabulated 
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Figure 5 Creep curves obtained from two trapezoidal HS- 
HS-130 Si3N 4 bars tested at 1300~ and 0.752Nm. 8 
and 8' are the centre-point deflections measured on bars 
oriented as shown in Figs. la and lb  respectively. The 
ratio of the centre-point deflections 8/8' is presented at 
several different times. The steady-state deflection rate 
(8) is given for geometry la. (8 = 4.2 X 10 -4 cmh -t ). 
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values for /3 and he are based on the steady-state 
deflection ratio ~/8/6' at each of the tempera- 
tures tested. If  ~i/8' is found to vary greatly with 
time, this analysis is not applicable. 

4.2. Determination of stresses and creep 
rates 

Once /3 and h e are known, the individual tensile 
and compressive stresses and creep rates can be 
calculated. The outer fibre compressive stress, abe, 
and the corresponding tensile stress, eht, are calcu- 
lated by using Fig. 4 and Equation 5, respectively. 

88 
Using 1/R = ~ -  and substituting into Equation 11 

allows us to calculate F(t) from the measurement 
of curvature as a function of time. The constant 
creep rates 6he and e~t are obtained by inserting 
the observed deflection rate, 8, and stress at the 
outer fibre into the time derivatives of Equation 1 
and Equation 11 with A -- 1 for tension and A = 
/3 for compression. 

4.3. Determination of the stress exponent, n 
The dependence of creep rate on n is required in 
order to perform correctly the analysis described 
above. One way to determine n from trapezoidal 
bend-bar tests is to perform tests at different loads 
and identical temperatures initially assuming n = 1. 
The assumption that /3 = 1 (i.e., the neutral axis 
lies in the centroidal plane) may also be made and 
has little effect on the resulting approximation of 
n. The analysis allows a plot of log strain rate versus 
log stress to be made, from which the value for n 
may be determined as the slope of the line. Data 
points denoted by squares in Fig. 6 represent the 
analysis of tests 1 and 2, assuming n and /3 are 
equal to one. It may be seen from Fig. 6 that a 
better approximation would be n = 2. Data denoted 
by circles represent the analysis based upon n = 2. 

For compression with our 1300~ C results, data 
from Lenoe [4], obtained in air on HS-130 Si3N4 
from uniaxial tensile tests (and corrected to 1300 ~ C 
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Figure 6 Graph of creep rate versus log stress comparing 
our results with creep rate data obtained from the litera- 
ture. The upper two lines shows the creep rate of  HS-130 
Si 3N 4 as measured in direct tension tests and the lower 
two lines show creep rate measured in compression tests. 

by the authors assuming an activation energy of 
Q=0 .63MJmo1-1  [4], are represented by a 
dashed line in Fig. 5. 

Our compressive creep rates are shown in Fig. 6 
and were determined in a similar fashion. For com- 
parision, compressive creep data obtained in air on 
HS-130 Si3N4 by Seltzer [5] are also given in Fig. 
6. The agreement is good for both the tensile and 
compressive creep rates calculated from the trap- 
ezoidal bend bar tests. Results of tests performed 
at 1260~ also agree with Leone's and Seltzer's 
work. 

Test number 3 (Table I) was performed on a 
previously tested bar and shows a smaller difference 
between the tensile and compressive creep rates. 
Also, the tensile creep rate is lower than the results 
obtained from unstrained material. This difference 
between strained and unstrained material has also 
been observed by Sletzer [5]. 

4.4. Reanalysis of published creep data 
Osborne [10] also performed four-point bend 
tests on Norton Co. HS-130 Si3N4. He reported a 

T A B L E  II  Osborne's published creep data [10].  

b2/b 1 M(a=My/1) H ( = b l )  L dss(at1260~ 
(N m) (mm) (mm) (h -l)  

1 0.42 3.2 25.4 2.75 • 10 -s 

steady-state creep rate of 1.1 x 10-Sh -1 (1227 ~ C 
and an outer fibre stress of 77 MNm-2). His value 
falls between the true tensile and compressive rates 
as reported in the literature [4 -6 ]* .  Using the 
analysis technique developed in this paper, it is 
possible to reanalyse Osborne's data and determine 
individual tensile and compressive creep rates. 

We have shown that the ratio of compressive 
creep to tensile creep in HS-130 Si3N4 is/3 = 0.18 
(average of four tests on previously unstrained ma- 
terial). From Osborne's data (see Table II), we 
known that b2/bl = 1. Fig. 4 can then be used to 
determine aHe (83.6MNm-2), and Equation 11 
used to get F(t) as a function of the measured 
creep strain [eme~s = (H/2R)]. Substituting F(t) 
into Equation 1 and taking the derivative gives the 
expression for tensile creep; 

et = 2(at/aZ-le)"ess(hc)(1/(3). 

For compressive creep the (1]/3) term is removed. 
When Osborne's data are used in these expressions 
we get 

et = 1.10 • 10-4h -1 at 83.6MNm -2 and 1260~ C 

and 

ge = 1.98 • lO-Sh -1 at 83.6MNm -2 and 1260~ 

The values we get from Fig. 5 under the same con- 
ditions are 

et = 1 .2  x lO-4h -a 
and 

ee = 1.4 x 10-Sh -1. 

This is excellent agreement. 

6. Conclusions 
The following conclusions may be drawn from the 
present investigation: 

(1) The tensile and compressive creep behaviour 
of a material can be determined from four-point 
bending tests on beams having trapezoidal cross- 
sections. 

(2) The analysis can be used to determine the 
stress exponent n, the ratio of compressive to ten- 

*This steady-state creep rate increases by a factor of--~ 2.5 with a 30 ~ C temperature increase. Css --~ 2.75 X 10- ~ h- 1 at 
1260 ~ C. 
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sile creep strain,/3, and the outer fibre tensile and 

compressive stresses. 

(3) The addition of  the parameter/3 complicates 

the analysis of  test data, but allows a more accurate 

determination of  material response. 

(4) The parameter 13 drastically alters the 

relationship observed between creep strain rates 

and stresses, in the case o f  Si3 N4, by at least half  

an order of  magnitude. 

(5) Individual tensile and compressive creep 

rates can be determined from conventional four- 

point bend tests once the parameter 13 is known. 
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